
; File: fibo.o

;--

; The present file tests the global possibilities for the ASSEMBLER /

;--

 XDEF fiboCount, counter, Fibonacci, main ;XDEF: This directive is used to declare external references,

meaning that these labels or symbols can be accessed from other files.

myData: section ; This starts a new data section named myData.ds.w 1:

fiboCount: ds.w 1 ; This directive is used to reserve space for a word (typically 2 bytes). Here, space is reserved

for fiboCount and counter.

counter: ds.w 1

locData: section ; locData: section: This starts another data section named locData

fib1: ds.w 1 ; Again, space is reserved for fib1, fib2, fibo, and i.

fib2: ds.w 1

fibo: ds.w 1

i: ds.w 1

myCode: section ; myCode: section: This begins the section of the program where the actual instructions

(code) reside.

Fibonacci:

 PSHD ; Push D register to the stack

 CLRB ; Clear B register

 CLRA ; Clear A register

 STD fib1 ; Store D register (which is now 0) to fib1

 INCB ; Increment B register (now B is 1)

 STD fib2 ; Store D register (which has value 1) to fib2

 LDX 0,SP ; Load stack pointer into X register

 STX fibo ; Store X register value to fibo

 LDAB #2 ; Load value 2 into AB register

 STD i ; Store D register value (2) to i

 BRA cond ; Branch always to label "cond". Until here, the code initializes variables and sets up the

environment to cpmpute Fib sequence.

 loop:

 LDD fib1 ; Load fib1 into D register

 ADDD fib2 ; Add fib2 to D register

 STD fibo ; Store the result in fibo

 LDX fib2 ; Load fib2 into X register

 STX fib1 ; Store X register value to fib1

 STD fib2 ; Store D register value to fib2 (update fib2 with the previously calculated Fibonacci number)

 LDX i ; Load i into X register

 INX ; Increment X register

 STX i ; Store incremented X register value back to i

 cond:

 LDD i ; Load i into D register

 CPD 0, SP ; Compare D register with value at stack pointer

 BLS loop ; Branch to "loop" if result is less than or same

 LDD fibo ; Load fibo into D register

 LEAS 2, SP ; Adjust stack pointer by adding 2

 RTS ; Return from subroutine

main:

 LDS #$3FF0 ; initialize Stack

 CLR fiboCount ; Clear fiboCount

 mainLoop:

 CLRB ; Clear B register

 CLRA ; Clear A register

 STD counter ; Store 0 in counter

 STD +0,SP ; Push D register (0) to the stack

 BRA testEnd ; Branch always to label "testEnd"

 incCnt:

 LDD counter ; Load counter into D register

 ADDD #1 ; Add 1 to D register

 STD counter ; Store updated D register value to counter

 BSR Fibonacci ; Call Fibonacci subroutine

 STD fiboCount ; Store the Fibonacci number in fiboCount

 LDX +0,SP ; Load value from stack into X register

 INX ; Increment X register

 STX +0,SP ; Store incremented X register value back to stack

 testEnd:

 LDD +0,SP ; Load value from stack into D register

 CPD #48 ; Compare D register with 48

 BLE incCnt ; Branch to "incCnt" if result is less than or equal

 BRA mainLoop ; Otherwise, branch to "mainLoop"

 PULD ; Pop value from stack into D register

 RTS ; Return from subroutine

Output: Observe Fibo,

