; File: fibo.o

; The present file tests the global possibilities for the ASSEMBLER /

)

XDEF fiboCount, counter, Fibonacci, main ;XDEF: This directive is used to declare external references,
meaning that these labels or symbols can be accessed from other files.

myData: section ; This starts a new data section named myData.ds.w 1:

fiboCount: ds.w 1 ; This directive is used to reserve space for a word (typically 2 bytes). Here, space is reserved
for fiboCount and counter.
counter: ds.w 1

locData: section ; locData: section: This starts another data section named locData

fibl: ds.w 1 ; Again, space is reserved for fibl, fib2, fibo, and i.
fib2: ds.w 1

fibo: ds.w 1

i ds.w 1

myCode: section
(code) reside.

; myCode: section: This begins the section of the program where the actual instructions

Fibonacci:

PSHD ; Push D register to the stack

CLRB ; Clear B register

CLRA ; Clear A register

STD fibl ; Store D register (which is now 0) to fib1l

INCB ; Increment B register (now B is 1)

STD fib2 ; Store D register (which has value 1) to fib2

LDX 0,Sp ; Load stack pointer into X register

STX fibo ; Store X register value to fibo

LDAB #2 ; Load value 2 into AB register

STD 1 ; Store D register value (2) to 1

BRA cond ; Branch always to label "cond". Until here, the code initializes variables and sets up the
environment to cpmpute Fib sequence.

loop:

LDD fibl ; Load fibl into D register

ADDD fib2 ; Add fib2 to D register

STD fibo ; Store the result in fibo

LDX fib2 ; Load fib2 into X register

STX fibl ; Store X register value to fibl

STD fib2 ; Store D register value to fib2 (update fib2 with the previously calculated Fibonacci number)

LDX 1 ; Load 1 into X register

INX ; Increment X register

STX i ; Store incremented X register value back to 1

cond:

LDD i ; Load 1 into D register

CpD 0, SP ; Compare D register with value at stack pointer

BLS loop ; Branch to "loop" if result is less than or same

LDD fibo ; Load fibo into D register

LEAS 2,SP ; Adjust stack pointer by adding 2

RTS ; Return from subroutine

main:
LDS #$3FF0 ; initialize Stack
CLR fiboCount ; Clear fiboCount
mainLoop:
CLRB ; Clear B register
CLRA ; Clear A register
STD counter ; Store 0 in counter
STD +0,SP ; Push D register (0) to the stack

BRA testEnd ; Branch always to label "testEnd"
incCnt:

LDD counter ; Load counter into D register

ADDD #1 ; Add 1 to D register

STD counter ; Store updated D register value to counter

BSR Fibonacci ; Call Fibonacci subroutine

STD fiboCount ; Store the Fibonacci number in fiboCount

LDX +0,SP ; Load value from stack into X register

INX ; Increment X register

STX +0,SP ; Store incremented X register value back to stack
testEnd:

LDD +0,SP ; Load value from stack into D register

CPD #48 ; Compare D register with 48

BLE incCnt ; Branch to "incCnt" if result is less than or equal

BRA mainLoop ; Otherwise, branch to "mainLoop"

PULD ; Pop value from stack into D register

RTS ; Return from subroutine

Output: Observe Fibo,

fiboCount int fiboCount

= 1 int fibkoCount 1 int
counter 1 int counter 2 int counter 3 int
fibl 0 int fibkl 1 int fibkl 1 int
fiba 1 int fib2 1 int fib2 2 int
fibo 1 int fibko 1 int fibko 2 int
i 2 int i 3 int i 4 int
fiboCount 2 int
fibolount ? :?.nt COUnter 4 int fibolount 5 int
counter 5 int fibl 7 int counter o int
fibl 3 int Fib2 3 int fibl 5 int
fib2 5 int Fibo 3 int fib2 2 int
Fibn 5 int i 5 int fibo Z int
i o int i 7 int
fikbolCount 2 int fiboCount 13 int fibolount 21l int
counter T int counter 2 int counter 9 int
fibl g int fibl 13 int fibl 21 int
fikb2 13 int fib2 21 int fib2 34 int
fibo 13 int fibo 21 int fibo 34 int
i 2 int i 9 int i 10 int
fiboCount 34 int fiboCount 55 int fibolCount 29 int
counter 10 int counter 11 int counter 12 int
fikl 34 int fibl 55 int fikl 29 int
fibz 55 int fib2 g% int fik2 144 int
fibo 55 int fibo 29 int fibo 144 int
i 11 int i 12 int i 13 int

